

Use of mesoporous SBA-15 for nanostructuring titania for photocatalytic applications

S. Perathoner^{a. c}, P. Lanzafame^{a. c}, R. Passalacqua^{a. c}, G. Centi^{a. c}, R. Schlögl^{b. c} and D.S. Su^{b. c}

^aDepartment of Industrial Chemistry and Engineering of Materials, University of Messina, UdR INSTM, Salita Sperone 31, 98166 Messina, Italy
^bDepartment of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, D-14195 Berlin, Germany
^cELCASS (European Laboratory for Catalysis and Surface Science)

Abstract

SBA15–TiO₂ samples prepared by introducing titanium with a grafting method and having TiO₂ loadings below 15 wt.% have been characterized by XRF, XRD, IR, porosimetry, SEM, HRTEM, and UV–Visible diffuse reflectance. Differently from the samples reported in the literature characterized by a high TiO₂ loading, no evidences have been found for the presence of titania particles inside or outside the mesopores of SBA-15. Three different titanium species were instead evidenced to be present. The first two derive from the reaction of titanium with silanol groups in the corona area of inner SBA-15 walls leading to the formation of either TiO₄ tetrahedral sites (by reaction by hydroxyl nests of surface defect sites) and/or pseudo-octahedral surface sites anchored by two (or more) Si or Ti ions through bridging oxygens. The third species derives from the reaction of SBA-15 channels, leading to the formation of TiO₂-like nanoareas (probably Si-doped) with dimensions of around 1–2 nm maximum. The potential interest of these materials as photocatalysts, for the presence of a TiO₂-like nanoareas highly accessible by reactants, is discussed.

Keywords:

SBA-15; Titania; Mesoporous materials; Corona; Ti-silica mesoporous materials; Photocatalytic materials